Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.319
Filtrar
1.
Respir Res ; 25(1): 174, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643159

RESUMO

BACKGROUND: Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS: Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS: The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION: The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Idoso , PPAR gama , Macrófagos Alveolares/metabolismo , Estudos de Coortes , Asma/epidemiologia , Senescência Celular
2.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637808

RESUMO

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismo
3.
Theranostics ; 14(6): 2526-2543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646640

RESUMO

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Assuntos
Ácido Clodrônico , Pulmão , Macrófagos Peritoneais , Nanopartículas , Animais , Ácido Clodrônico/farmacologia , Ácido Clodrônico/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Pulmão/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição GATA6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Carbocianinas/química , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo
4.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Assuntos
Coinfecção , Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo
5.
Int Immunopharmacol ; 131: 111853, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503014

RESUMO

Acute lung injury (ALI) is a common postoperative complication, particularly in pediatric patients after liver transplantation. Hepatic ischemia-reperfusion (HIR) increases the release of exosomes (IR-Exos) in peripheral circulation. However, the role of IR-Exos in the pathogenesis of ALI induced by HIR remains unclear. Here, we explored the role of exosomes derived from the HIR-injured liver in ALI development. Intravenous injection of IR-Exos caused lung inflammation in naive rats, whereas pretreatment with an inhibitor of exosomal secretion (GW4869) attenuated HIR-related lung injury. In vivo and in vitro results show that IR-Exos promoted proinflammatory responses and M1 macrophage polarization. Furthermore, miRNA profiling of serum identified miR-122-5p as the exosomal miRNA with the highest increase in young rats with HIR compared with controls. Additionally, IR-Exos transferred miR-122-5p to macrophages and promoted proinflammatory responses and M1 phenotype polarization by targeting suppressor of cytokine signaling protein 1(SOCS-1)/nuclear factor (NF)-κB. Importantly, the pathological role of exosomal miR-122-5p in initiating lung inflammation was reversed by inhibition of miR-122-5p. Clinically, high levels of miR-122-5p were found in serum and correlated to the severity of lung injury in pediatric living-donor liver transplant recipients with ALI. Taken together, our findings reveal that IR-Exos transfer liver-specific miR-122-5p to alveolar macrophages and elicit ALI by inducing M1 macrophage polarization via the SOCS-1/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Transplante de Fígado , MicroRNAs , Pneumonia , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Criança , Macrófagos Alveolares/metabolismo , Exossomos/metabolismo , Doadores Vivos , MicroRNAs/genética , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia/metabolismo , Pneumonia/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Reperfusão
6.
Front Immunol ; 15: 1374670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529288

RESUMO

Introduction: Allergic asthma has been mainly attributed to T helper type 2 (Th2) and proinflammatory responses but many cellular processes remain elusive. There is increasing evidence for distinct roles for macrophage and dendritic cell (DC) subsets in allergic airway inflammation (AAI). At the same time, there are various mouse models for allergic asthma that have been of utmost importance in identifying key inflammatory pathways in AAI but that differ in the allergen and/or route of sensitization. It is unclear whether and how the accumulation and activation of specialized macrophage and DC subsets depend on the experimental model chosen for analyses. Methods: In our study, we employed high-parameter spectral flow cytometry to comprehensively assess the accumulation and phenotypic alterations of different macrophage- and DC-subsets in the lung in an OVA- and an HDM-mediated mouse model of AAI. Results: We observed subset-specific as well as model-specific characteristics with respect to cell numbers and functional marker expression. Generally, alveolar as opposed to interstitial macrophages showed increased MHCII surface expression in AAI. Between the models, we observed significantly increased numbers of alveolar macrophages, CD103+ DC and CD11b+ DC in HDM-mediated AAI, concurrent with significantly increased airway interleukin-4 but decreased total serum IgE levels. Further, increased expression of CD80 and CD86 on DC was exclusively detected in HDM-mediated AAI. Discussion: Our study demonstrates a model-specific involvement of macrophage and DC subsets in AAI. It further highlights spectral flow cytometry as a valuable tool for their comprehensive analysis under inflammatory conditions in the lung.


Assuntos
Asma , Macrófagos Alveolares , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Modelos Animais de Doenças , Células Th2/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Inflamação/metabolismo , Células Dendríticas/metabolismo
7.
J Pharm Sci ; 113(5): 1395-1400, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460572

RESUMO

Liposomes are being developed as inhalable drug delivery systems, but concerns remain about their impact on the lungs. To better understand the impact of liposomes and their physicochemical properties on alveolar macrophages, the cytokine and chemokine expression profile of rat alveolar Nr8383 macrophages exposed to 0.1 and 1 mg/ml hydrogenated soy phosphatidylcholine (HSPC) liposomes was examined. Expression patterns varied considerably between liposomes in a concentration-dependent manner, with both anti- and pro-inflammatory chemokines/cytokines produced. Uncharged liposomes induce the greatest production of cytokines and chemokines, followed by PEGylated liposomes. The most significant increase in cytokine/chemokine expression was seen for IL-2 (up to 24-fold), IL-4 (up to 5-fold), IL-18 and VEGF (up to 10-fold), while liposome exposure significantly reduced MIP1 expression (5-fold). In summary, we demonstrate that liposome surface properties promote variable patterns of cytokine and chemokine secretion by alveolar macrophages. This suggests that the type of liposome employed may influence the type of immune response generated in the lung and by extension, dictate how inhaled liposomal nanomedicines affect the lungs response to inhaled toxicants and local infections.


Assuntos
Lipossomos , Macrófagos Alveolares , Ratos , Animais , Lipossomos/química , Macrófagos Alveolares/metabolismo , Citocinas , Quimiocinas/metabolismo , Fosfatidilcolinas/química
8.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469626

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Assuntos
Dipeptidil Peptidase 4 , Lipopolissacarídeos , Macrófagos Alveolares , Camundongos Knockout , Animais , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Interleucina-6/metabolismo , Interleucina-6/genética , Masculino , Permeabilidade Capilar , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Fator de Necrose Tumoral alfa/metabolismo , Líquido da Lavagem Broncoalveolar , Células Cultivadas
9.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466420

RESUMO

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Pulmão/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Inflamação/terapia , Inflamação/metabolismo , Organoides/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474030

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Macrófagos Alveolares/metabolismo , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem
11.
Stem Cells Transl Med ; 13(4): 371-386, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38349749

RESUMO

Acute lung injury (ALI) is an important pathological process of acute respiratory distress syndrome, yet there are limited therapies for its treatment. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to be effective in suppressing inflammation. However, the effects of MSCs-Exo on ALI and the underlying mechanisms have not been well elucidated. Our data showed that MSCs-Exo, but not exosomes derived from MRC-5 cells (MRC-5-Exo), which are human fetal lung fibroblast cells, significantly improved chest imaging, histological observations, alveolocapillary membrane permeability, and reduced inflammatory response in ALI mice model. According to miRNA sequencing and proteomic analysis of MSCs-Exo and MRC-5-Exo, MSCs-Exo may inhibit pyroptosis by miRNAs targeting caspase-1-mediated pathway, and by proteins with immunoregulation functions. Taken together, our study demonstrated that MSCs-Exo were effective in treating ALI by inhibiting the pyroptosis of alveolar macrophages and reducing inflammation response. Its mechanism may be through pyroptosis-targeting miRNAs and immunoregulating proteins delivered by MSCs-Exo. Therefore, MSCs-Exo may be a new treatment option in the early stage of ALI.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Humanos , Macrófagos Alveolares/metabolismo , Piroptose , Exossomos/metabolismo , Proteômica , Lesão Pulmonar Aguda/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
12.
Cell Death Differ ; 31(4): 417-430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374230

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.


Assuntos
Bleomicina , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fibrose Pulmonar , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Macrófagos/metabolismo , Masculino , Humanos , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Transdução de Sinais
13.
PLoS One ; 19(2): e0295312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300916

RESUMO

Alveolar macrophages (AM) perform a primary defense mechanism in the lung through phagocytosis of inhaled particles and microorganisms. AM are known to be relatively immunosuppressive consistent with the aim to limit alveolar inflammation and maintain effective gas exchange in the face of these constant challenges. How AM respond to T cell derived cytokine signals, which are critical to the defense against inhaled pathogens, is less well understood. For example, successful containment of Mycobacterium tuberculosis (Mtb) in lung macrophages is highly dependent on IFN-γ secreted by Th-1 lymphocytes, however, the proteomic IFN-γ response profile in AM remains mostly unknown. In this study, we measured IFN-γ induced protein abundance changes in human AM and autologous blood monocytes (MN). AM cells were activated by IFN-γ stimulation resulting in STAT1 phosphorylation and production of MIG/CXCL9 chemokine. However, the global proteomic response to IFN-γ in AM was dramatically limited in comparison to that of MN (9 AM vs 89 MN differentially abundant proteins). AM hypo-responsiveness was not explained by reduced JAK-STAT1 signaling nor increased SOCS1 expression. These findings suggest that AM have a tightly regulated response to IFN-γ which may prevent excessive pulmonary inflammation but may also provide a niche for the initial survival and growth of Mtb and other intracellular pathogens in the lung.


Assuntos
Macrófagos Alveolares , Proteômica , Humanos , Citocinas/metabolismo , Perfilação da Expressão Gênica , Macrófagos Alveolares/metabolismo , Monócitos
14.
Immunohorizons ; 8(2): 147-162, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345473

RESUMO

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFN-γ is regulated. This shortcoming prevents the development of therapeutics that effectively target distinct lung macrophage populations without exacerbating inflammation. We aimed to better understand the transcriptional regulation of resting and IFN-γ-activated cells using a new ex vivo model of AMs from mice, fetal liver-derived alveolar-like macrophages (FLAMs), and immortalized bone marrow-derived macrophages. Our findings reveal that IFN-γ robustly activates both macrophage types; however, the profile of activated IFN-γ-stimulated genes varies greatly between these cell types. Notably, FLAMs show limited expression of costimulatory markers essential for T cell activation upon stimulation with only IFN-γ. To understand cell type-specific differences, we examined how the inhibition of the regulatory kinases GSK3α/ß alters the IFN-γ response. GSK3α/ß controlled distinct IFN-γ responses, and in AM-like cells, we found that GSK3α/ß restrained the induction of type I IFN and TNF, thus preventing the robust expression of costimulatory molecules and limiting CD4+ T cell activation. Together, these data suggest that the capacity of AMs to respond to IFN-γ is restricted in a GSK3α/ß-dependent manner and that IFN-γ responses differ across distinct macrophage populations. These findings lay the groundwork to identify new therapeutic targets that activate protective pulmonary responses without driving deleterious inflammation.


Assuntos
Linfócitos T CD4-Positivos , Macrófagos Alveolares , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Interferon gama , Pulmão/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/metabolismo
15.
Int Immunopharmacol ; 129: 111585, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325045

RESUMO

Cuproptosis, a novel mode of cell death, is strongly associated with a variety of diseases. However, the contribution of cuproptosis to the onset or progression of chronic obstructive pulmonary disease (COPD), the third most common chronic cause of mortality, is not yet clear. To investigate the potential role of cuproptosis in COPD, raw datasets from multiple public clinical COPD databases (including RNA-seq, phenotype, and lung function data) were used. For further validation, mice exposed to cigarette smoke for three months were used as in vivo models, and iBMDMs (immortalized bone marrow-derived macrophages) and RAW264.7 cells stimulated with cigarette smoke extract were used as in vitro models. For the first time, the expression of the cuproptosis-related gene glutaminase (GLS) was found to be decreased in COPD, and the low expression of GLS was significantly associated with the grade of pulmonary function. In vivo experiments confirmed the decreased expression of GLS in COPD, particularly in alveolar macrophages. Furthermore, in vitro studies revealed that copper ions accumulated in alveolar macrophages, leading to a substantially decreased amount of cell activity of macrophages when stimulated with cigarette extract. In summary, we demonstrate the high potential of GLS as an avenue for diagnosis and therapy in COPD.


Assuntos
Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Macrófagos Alveolares/metabolismo , Cobre/metabolismo , Glutaminase/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo
16.
Cell Mol Immunol ; 21(4): 332-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228746

RESUMO

Remote organ injury, which is a common secondary complication of sterile tissue damage, is a major cause of poor prognosis and is difficult to manage. Here, we report the critical role of tissue-resident macrophages in lung injury after trauma or stroke through the inflammatory response. We found that depleting tissue-resident macrophages rather than disrupting the recruitment of monocyte-derived macrophages attenuated lung injury after trauma or stroke. Our findings revealed that the release of circulating alarmins from sites of distant sterile tissue damage triggered an inflammatory response in lung-resident macrophages by binding to receptor for advanced glycation end products (RAGE) on the membrane, which activated epidermal growth factor receptor (EGFR). Mechanistically, ligand-activated RAGE triggered EGFR activation through an interaction, leading to Rab5-mediated RAGE internalization and EGFR phosphorylation, which subsequently recruited and activated P38; this, in turn, promoted RAGE translation and trafficking to the plasma membrane to increase the cellular response to RAGE ligands, consequently exacerbating inflammation. Our study also showed that the loss of RAGE or EGFR expression by adoptive transfer of macrophages, blocking the function of RAGE with a neutralizing antibody, or pharmacological inhibition of EGFR activation in macrophages could protect against trauma- or stroke-induced remote lung injury. Therefore, our study revealed that targeting the RAGE-EGFR signaling pathway in tissue-resident macrophages is a potential therapeutic approach for treating secondary complications of sterile damage.


Assuntos
Lesão Pulmonar , Acidente Vascular Cerebral , Humanos , Macrófagos , Macrófagos Alveolares/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores ErbB/metabolismo , Acidente Vascular Cerebral/metabolismo
17.
Mol Nutr Food Res ; 68(5): e2300667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282089

RESUMO

SCOPE: Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS: An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1ß by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS: The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.


Assuntos
Ganoderma , Macrófagos Alveolares , NF-kappa B , Camundongos , Animais , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Material Particulado/toxicidade , Material Particulado/análise , Anti-Inflamatórios/farmacologia , Pulmão/química , Pulmão/metabolismo
18.
J Cell Biochem ; 125(2): e30519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224137

RESUMO

Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Transplante de Células-Tronco Mesenquimais , Humanos , Lipopolissacarídeos/efeitos adversos , Exossomos/metabolismo , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Cordão Umbilical/metabolismo
19.
Am J Physiol Cell Physiol ; 326(3): C964-C977, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189137

RESUMO

Mast-cell expressed membrane protein-1 (MCEMP1) is higher in patients with idiopathic pulmonary fibrosis (IPF) with an increased risk of death. Here we aimed to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared with controls. MCEMP1 is upregulated by transforming growth factor beta (TGFß) at the mRNA and protein levels in monocytic leukemia THP-1 cells. TGFß-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis-regulatory elements within the MCEMP1 promoter. We also found that MCEMP1 regulates TGFß-mediated monocyte chemotaxis, adhesion, and migration. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.NEW & NOTEWORTHY MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF, is regulated by TGFß, and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFß in RHO activity.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Proteínas de Membrana/metabolismo , Quimiotaxia , Mastócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo
20.
Vet Immunol Immunopathol ; 268: 110707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181474

RESUMO

Rhodococcus equi (R. equi), a pneumonia-causing intracellular bacterium, results in significant morbidity and mortality in young foals, while healthy adult horses rarely develop disease. Survival and replication within alveolar macrophages (AMφ) are the hallmarks of R. equi's pathogenicity. The vitamin D receptor (VDR) and its ligand, the active vitamin D metabolite 1,25(OH)2D, are important in immune responses to intracellular bacteria. The vitamin D/VDR pathway regulates the downstream production of cytokines in infected human AMφ. The immunomodulatory role of the vitamin D/VDR pathway in equine leukocytes is unknown. The objective of the current study was to determine the impact of R. equi infection and age on synthesis of 1,25(OH)2D, VDR expression, and cytokine production in an ex vivo model of R. equi infection in equine AMφ. AMφ were collected from ten healthy foals at 2-, 4- and 8-weeks old and from nine healthy adult horses once via bronchoalveolar lavage. AMφ were mock infected (CONTROL) or infected with a virulent laboratory strain of R. equi for 7 days (INFECTED). VDR expression was determined via RT-qPCR from cell lysates. 1,25(OH)2D and cytokines were measured in cell supernatant by immunoassays. VDR expression was impacted by age (P = 0.001) with higher expression in AMφ from 8-week-old foals than from 2-week-old foals and adults. There was no significant effect of infection in foal AMφ, but in adults, relative VDR expression was significantly lower in INFECTED AMφ compared to CONTROL AMφ (P = 0.002). There was no effect of age or infection on 1,25(OH)2D concentration (P > 0.37). Mean TNFα production was significantly higher from INFECTED compared to CONTROL AMφ from 4- and 8-week-old foals and adults (P < 0.005). Mean IFNγ production was significantly higher from AMφ from foals at 8-weeks-old compared to 2-weeks-old (P = 0.013) and higher from INFECTED AMφ than from CONTROL AMφ in foals at 4-weeks-old and in adults (P < 0.027). The proportion of samples producing IL-1ß and IL-10 was also significantly higher from INFECTED compared to CONTROL AMφ isolated from 4-week-old foals (P < 0.008). Similarly, in adult samples, IL-17 was produced from a greater proportion of INFECTED compared to CONTROL samples (P = 0.031). These data document age-associated changes in VDR expression and cytokine production in equine AMφ in response to R. equi infection. This preliminary investigation supports the need for further research to fully elucidate if the vitamin D pathway has an immunomodulatory role in the horse.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Animais , Infecções por Actinomycetales/veterinária , Citocinas/metabolismo , Cavalos , Macrófagos Alveolares/metabolismo , Receptores de Calcitriol , Vitamina D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...